If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+7n-56=0
a = 5; b = 7; c = -56;
Δ = b2-4ac
Δ = 72-4·5·(-56)
Δ = 1169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1169}}{2*5}=\frac{-7-\sqrt{1169}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1169}}{2*5}=\frac{-7+\sqrt{1169}}{10} $
| 3x+4(-x-5)x=5 | | -4v-16=-16-4v | | 15x+9=18x+6 | | -10(x+7)=-30 | | 6,72+3c=34,2 | | 3^7x=5 | | 3r+3+6=9+2r | | 11x^2+14=47 | | 7k+6k=13 | | 2x+26=42 | | -16-6x=-6(4x+6)+2 | | 35x+75=215 | | 6x(x-7)=(2x+1)(x-7) | | 2(-3x-8)-x=12 | | 1/2v+2=1/4(2v+3) | | 1/2x+5=2/4x+1 | | X^2+9x+8x=0 | | H(x)=3x+1 | | 2x+12=-3x+7x | | 1x+(-5)=8 | | a/2-7=2 | | 9x+2=9x-2 | | 16x^2+50=1 | | 2x÷9=4 | | 3x-7=6x-22 | | 20x²-4x=ᴏ | | 9y-9=4y+11 | | 5(x+6)=-10 | | -4-4K=4K-8-7k | | 90xY=45 | | -7(2x-4)=2(x-11) | | (0.2-2x)^2=0 |